welcome to XRM blog

Keep in touch with latest CRM/ERP articles

To remain competitive your organisation must be efficient across the business process spectrum. To do so you need to take sound decisions based on a balance between the cost and risk. To do so you will be heavily dependent on your content management in itself needs...

image
Blog

Understanding Relationships in Power BI

By Divya Mishra on 5/9/2025

When building reports in Power BI, it’s common to work with multiple tables. But to make the data meaningful and interactive, we need to connect these tables using relationships. 

Here, we’ll understand what relationships are, the different types available in Power BI, and how to create and manage them effectively. 

What is a Relationship in Power BI? 

A relationship in Power BI links two tables using a common column — just like how a VLOOKUP works in Excel. 

For example, consider the following two tables: 

Sales: Contains OrderID, ProductID, Quantity, and Date 

Products: Contains ProductID, ProductName, and Category 

To display product names in your sales report, you’ll need to link ProductID in both tables. That’s a relationship! 

Types of Relationships in Power BI 

Power BI supports four types of relationships: 

1. One-to-Many (1:*) 

Most common type 

Example: One product can appear in many sales records 

2. Many-to-One (*:1) 

While it appears reversed, Power BI internally handles One-to-Many and Many-to-One the same way. The difference lies in identifying which table acts as the lookup (one side) and which serves as the fact table (many side). 

3. Many-to-Many (*:*) 

Used when both tables contain duplicate values in the relationship column. 

4. One-to-One (1:1) 

Both tables have unique values in the relationship column 

How to Create a Relationship? 

Method 1: Automatically (Power BI Autodetect) 

When you import tables, Power BI often detects relationships automatically if matching column names and values exist. 

To check: 

  1. Navigate to the Model View (icon on the left sidebar) 

Rectangle 1, ShapeA screenshot of a computer

Description automatically generated, Picture 

  1. Hover over the relationship line to see details. 

Picture 1, Picture 

  1. Double-click on that line to edit if needed. 

Picture 1, Picture 

Method 2: Manually 

  1. Open Model View 

A screenshot of a computer

Description automatically generated, Picture 

  1. Drag a field from one table to the matching field in another table. A new relationship popup will appear. 

Picture 1, Picture 

  1. In the Create Relationship window: 
  • Choose Cardinality (e.g., One-to-Many) 
  • Set Cross Filter Direction (usually Single) and then save it. 

Advanced: 

  1. Cross Filter Direction in Power BI:  

Cross filter direction defines how filtering works between two connected tables. 

Single (→): In this mode, filtering occurs in only one direction—from the one-side table (usually a dimension or reference table) to the many-side table (commonly the fact table). This approach is widely used due to its simplicity and better performance in typical data models. 

Use this in most cases, especially in star schemas, for better performance and clarity. 

Both (↔): Filters flow in both directions. 

Use when you need to filter data across both tables, like in many-to-many relationships or complex reports. 

Use bidirectional filters cautiously, as they may introduce performance degradation or circular dependency errors in complex models. 

  1. Mark Relationship as Active: 

Between any two specific tables, Power BI permits only one relationship to be active at a time. Other relationships can exist but remain inactive unless explicitly activated using DAX. 

The active relationship serves as the primary link Power BI uses for generating visuals and performing calculations. 

Inactive relationships can still be used in DAX using the USERELATIONSHIP() function. 

Use Case: Use inactive relationships when you have multiple possible connections between tables (e.g., Order Date vs. Ship Date) but want to switch dynamically in calculations. 

  1. Apply Security Filter in Both Directions: 

This option appears when Row-Level Security (RLS) is used. It ensures that the security filter flows both ways between related tables. 

Use this if: 

You want RLS to restrict data across both tables (e.g., a user should only see data related to their assigned region across all tables). 

Be careful: It can cause unintended access limitations or circular filtering if not handled properly. 

#Creating Relationships in Power BI
#Data Relationships
#Many-to-One Relationship
#One-to-Many Relationship #Many-to-Many Relationship
#One-to-One Relationship
#Power BI Relationships
Blog Calendar
Blog Calendar List
2026 Jan  19  2
2025 Dec  15  2
2025 Nov  20  5
2025 Oct  13  5
2025 Sep  58  6
2025 Aug  47  4
2025 Jul  23  8
2025 Jun  23  6
2025 May  68  9
2025 Apr  35  6
2025 Mar  73  7
2025 Feb  42  6
2024 Nov  12  1
2024 Aug  8  1
2024 Apr  61  4
2024 Mar  203  4
2024 Feb  564  3
2024 Jan  36  7
2023 Dec  46  6
2023 Nov  741  5
2023 Oct  989  11
2023 Sep  2225  9
2023 Aug  680  6
2023 Jul  49  6
2023 Jun  27  4
2023 May  45  5
2023 Apr  96  5
2023 Mar  238  6
2023 Feb  184  5
2023 Jan  101  4
2022 Dec  98  7
2022 Nov  311  2
2022 Sep  14  1
2022 Aug  32  2
2022 Jun  11  2
2022 May  6  2
2022 Apr  12  2
2022 Mar  2  1
2022 Feb  2  1
2022 Jan  1  1
2021 Dec  4  1
2021 Nov  2  1
2021 Oct  2  1
2021 Sep  14  1
2021 Aug  49  5
2021 Jul  55  4
2021 Jun  1952  5
2021 May  43  3
2021 Apr  2291  3
2021 Mar  220  5
2021 Feb  2924  7
2021 Jan  4349  9
2020 Dec  635  7
2020 Sep  85  3
2020 Aug  797  3
2020 Jul  140  1
2020 Jun  107  3
2020 Apr  110  3
2020 Mar  19  2
2020 Feb  35  5
2020 Jan  49  7
2019 Dec  18  4
2019 Nov  42  1
2019 Jan  23  2
2018 Dec  158  4
2018 Nov  68  3
2018 Oct  18  3
2018 Sep  1316  11
2018 Aug  7  2
2018 Jun  21  1
2018 Jan  74  2
2017 Sep  592  5
2017 Aug  17  1
2017 Jul  18  2
2017 Jun  65  2
2017 May  21  1
2017 Apr  40  2
2017 Mar  145  4
2017 Feb  874  4
2016 Dec  213  3
2016 Nov  1142  8
2016 Oct  359  10
2016 Sep  849  6
2016 Aug  40  1
2016 Jun  1903  6
2016 May  118  3
2016 Jan  73  2
2015 Dec  810  6
2015 Nov  4  1
2015 Oct  13  1
2015 Sep  1476  6
2015 Aug  14  1
2015 Jul  130  2
2015 Jun  11  1
2015 May  20  1
2015 Apr  30  3
2015 Mar  80  3
2015 Jan  5350  4
2014 Dec  19  1
2014 Nov  2260  4
2014 Oct  69  1
2014 Sep  107  2
2014 Aug  5348  1
2014 Jul  49  2
2014 Apr  2606  12
2014 Mar  308  17
2014 Feb  223  6
2014 Jan  1510  16
2013 Dec  21  2
2013 Nov  696  2
2013 Oct  256  3
2013 Sep  13  1
2013 Aug  40  3
2013 Jul  214  1
2013 Apr  62  6
2013 Mar  2410  10
2013 Feb  131  3
2013 Jan  354  2
2012 Nov  63  2
2012 Oct  520  10
Tag Cloud
Interested in our services? Still not sure about project details? get a quote